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Abstract. The spherical model of a spin glass with infinite-range interactions is studied to 
obtain the distribution of barrier heights between time-reversed states. The problem is 
shown to be equivalent at leading order to that of finding the distribution of the difference 
between the largest two eigenvalues of the exchange matrix. For the case where the 
exchange matrix is Gaussian orthogonal an approximate distribution is quoted and verified 
numerically. The barriers between time-reversed states scale with system size, N, as 
(1- T / T C ) N ' I 3 .  The barrier heights in the Sherrington and Kirkpatrick model of a spin 
glass are also studied. Using the mean-field equations of Thouless, Anderson and Palmer 
a perturbation analysis in terms of the eigenvectors of the Hessian is performed. In the 
scaling limit T-,  T,. N -, CO with (1 - T /  T,) fixed, macroscopic condensation into the 
largest eigenvector occurs and the barrier between time-reversed states scales with system 
size as (1 - T /  T,) 

1. Introduction 

The dynamics of the Sherrington and Kirkpatrick (SK) model [ 13 of an Ising spin glass 
with infinite-range interactions continue to be the focus of much interest. This problem 
is greatly complicated by the non-ergodic behaviour of the model and the lack of an 
obvious symmetry between the pure (thermodynamic) states corresponding to valleys 
in the free energy surface. 

The standard picture of the free energy surface [2] in the spin-glass phase is one 
in which there are a large number of valleys corresponding to pure and metastable 
states. The barriers between these valleys are finite for finite systems but in the 
thermodynamic limit the height of the barriers between the pure states diverge. Thus, 
taking the thermodynamic limit divides the phase space into a number of regions 
between which the system cannot move in finite time (i.e. the ergodicity is broken). 
This causes the relaxation times between pure states to diverge. The relaxation times 
between metastable states (i.e. non-pure states) are long but remain finite in the 
thermodynamic limit. 

The pure and metastable states correspond to physical solutions of the mean-field 
equations of Thouless, Anderson and Palmer (TAP) [3]. The number of such solutions 
has been shown to diverge exponentially with system size. For a schematic plot of the 
free energy of a spin glass see figure 1. 

In calculating statistical mechanics averages it is usually necessary to restrict the 
states in the average to one pure state or another. This is done in the Ising ferromagnet 
by introducing a symmetry breaking field which is taken to zero after the thermodynamic 
limit has been taken. The field forces the system into a single pure state. It is possible 
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Figure I. Schematic plot of the free energy of a spin glass against a phase space coordinate. 
The minima correspond to metastable states. 

to do this in the Ising ferromagnet because of the time-reversal symmetry between the 
pure states. In the SK model the pure states arise through a combination of the disorder 
and frustration in the system. There is no obvious symmetry between them and a 
convenient mechanism has not yet been found for restricting the system to one pure 
state. 

Sompolinsky and Zippelius [4] have developed a formalism for the dynamics of 
spin glasses which attempts to overcome this problem. From a dynamic Lagrangian 
for the SK model they derive a stochastic equation of motion for a single spin. The 
equilibrium solution of this equation suggests that, on infinite time scales, the fluctu- 
ation-dissipation theorem is violated. This is interpreted as motion between states 
which are non-ergodic in the thermodynamic limit, i.e. pure states. The implications 
drawn from this are that the static solutions of the SK model are ill defined in the 
thermodynamic limit unless the time dependence of the spin correlations and response 
functions are taken into account for finite systems. With this in mind Sompolinsky 
and Zippelius (sz) set up a static solution of the SK model that applies to large but 
finite systems. The central feature of this theory is a spectrum of relaxation times 
which diverges in the thermodynamic limit. These relaxation times arise from motion 
over barriers that would become infinite in the thermodynamic limit. 

Monte Carlo simulations have been performed to confirm the existence of a 
spectrum of relaxation times in the SK model. Mackenzie and Young [ 5 ]  found that 
the largest relaxation time 7 for the spectrum of sz diverged with system size N as 

ln(7) N P  (1) 

with j3 = 0.27i0.10. Bhatt et a1 [ 6 ]  later found that j3 =0.35*0.05. The rate of 
divergence with system size of the spectrum of relaxation times is not something which 
emerges from the sz theory. Knowledge of the rate of divergence is essential when 
evaluating averages using numerical simulations and has relevance to a number of 
problems in neural networks and combinatorial optimisation [2]. 

The SK model has a global symmetry Si + -S ,  in the zero-field Hamiltonian, so for 
every state Si there is a time-reversed state -Si. Applying a uniform field breaks this 
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symmetry and thus reduces the number of pure states by a factor of 2. The time taken 
for the whole system to move from its present phase to its time-reversed phase is on 
the scale of the ergodic time. This longer time scale may not form part of the spectrum 
of relaxation times discussed above, although it may diverge with system size at the 
same rate. Bhatt et a1 [ 6 ]  found that this time scale diverges as (1) with p = 0.27*0.10. 
The large error bars indicate the difficulty in determining the true value of this exponent, 
which of course should be at least as large as that associated with the spectrum of 
relaxation times of (1). 

In this paper we look at the relaxation times between time-reversed states of the 
SK model and the SK model in its spherical limit. For the spherical model we find that 
the smallest barrier scales as tN1l3  ( t  = 1 - T/ T,) for large N in the low-temperature 
phase. In the SK model the regime t + 0, N -* CO, t N 1 / 3  fixed is considered. Macroscopic 
condensation is found to occur and the barrier between time-reversed states scales as 
tN1'3. 

2. The spherical model 

The Hamiltonian for the infinite-range spin-glass spherical model is given by 

where (i, j )  indicates a sum is over all distinct pairs of i and j .  The spins Si satisfy 
the spherical constraint 

I 

where N is the number of spins in the system. The exchange couplings Ji i (=Ai)  are 
independent Gaussian random variables. In order to make contact with known results 
in random matrix physics the mean and variance of the Gaussian distribution will be 
chosen to make the exchange matrix J (defined by (J ) i i  = J i j )  a Gaussian orthogonal 
matrix. This will involve having on-site disorder (Ji i  # 0) but this will have no effect 
on the physics, which is determined by the off-diagonal terms. 

We now diagonalise J by introducing new spin variables SA, A = 1,2, . . . , N, defined 
bY 

where ( A  1 i) is the orthonormal eigenvector of J associated with the eigenvalue JA , The 
energy of the system, E, is now given by 

where J A  are the eigenvalues of J ordered J1 < J2 < . . . < J N .  The variables SA satisfy 
the constraint 

S: = N. 
A 

In the thermodynamic limit the density of eigenvalues J A  is given by the Wigner 
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semicircle law 

JZ 4 J 2  
(7)  

otherwise 

if the elements of J are independent Gaussian variables with zero mean and variance 
J 2 / N .  When solving the spherical model it is normal to introduce a Lagrangian 
multiplier, p, into the energy in order to handle the constraint, ( 6 ) .  The energy is 
rewritten as 

F = - i z ( J A - p ) s Z - p N / 2  
A 

and correlation functions calculated using the partition function 

Z = (257i)-' [ Ds [:: d p  exp{-PF}. ( 9 )  

The integration over p represents a delta function which ensures that the spherical 
constraint is satisfied. 

For completeness we restate the results of Kosterlitz et a1 [7] and calculate the 
thermal average of the square of the new variables SA in the high- and low-temperature 
phases. For T > T, this correlation is given by 

where ( ) denotes the thermal average and p is chosen by steepest descents so that 
the constraint 

- N  
T s: = (ST) = c (S i )  = -- 

I I A A P-JA 

is satisfied. If N is large the last summation in (11) can be evaluated approximately 
using 

where p ( J , + )  is the expression for the eigenvalue density in the thermodynamic limit 
given by (7). This yields the saddle point equation for p :  

2 J 2 /  T = p - (p2  - 4J2) ' I2 .  

This equation has the solution p = T(1+ J 2 /  T 2 )  for T > J so that the critical tem- 
perature can be identified as T,= J. For T < J there is no solution and p sticks at 2J, 
the branch point of the integral in (9). Hence in the low-temperature phase (10) and 
(1 1) become 

T 
2 J -  JA 

(Sf)=- 

for A # N and 
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Evaluating this sum using (7)  and (1 1) yields 

(SZ,)= N ( l -  T / J ) .  (15) 

It should be noted that the eigenvalue spectrum of J, p ( J , ) ,  is only bounded in 
the thermodynamic limit. When N is finite Lifshitz [8] tails develop in the distribution 
(see figure 2) of order [9] 

N2I3 exp[-2(IJAI -2J)N2l3] (16) 
for IJhI > 25. There are thus a finite number of eigenvalues situated in the tails O( N-2'3) 
beyond *2J. 

The result (15) illustrates how, in the spherical model, spin-glass ordering is 
associated with macroscopic condensation into the eigenstate of the exchange matrix 
J with the largest eigenvalue. The variable ( S , )  is the order parameter of the spherical 
model. 

We next turn to the calculation of the barriers between the pure states SN and 
- S N .  Integrating out the N -2 fastest modes SN-2, S N - 3 , .  . . , S1 from (8) and (9) 
leaves the partition function as 

2 = (27ri)-' dSN dS,-, d p  exp{-PF'} (17) I c 
where the new free energy F' is given by 

N -2 
F'=  -Np/2-J~S2,/2-J~-lS2,-,/2+ps2,/2fpSZ,-1/2+ (T/2)  ln(p -5,).  (18) 

h = l  

Clearly we can parametrise (18) with 

S N  = N1I2a 

and 

- 
4 

-3 
a - 

1 I n J  

-2J  0 2 1  

Jx 
Figure 2. Graph of the eigenvalue density for a large finite-sized random matrix. The 
dynamics are controlled by the (shaded) tail of the distribution in which there are O(1) 
eigenvalues. The size of the tails has been exaggerated for clarity. 
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so that it becomes 
N - 2  

F’ = - N p / 2  - J N a 2 N / 2  - J N - 1  b 2 N / 2  + p a 2 N / 2  + p b 2 N / 2  + ( T / 2 )  1 In( p - J A  ). 
~ 

A = l  

( 2 1 )  

In the N+co limit the integral in ( 1 7 )  can be evaluated to leading order by setting 
8 F t / 8 p  = 0. We have already seen that in the low-temperature phase p takes the value 
25. So 

where the last term is obtain by evaluating the sum using ( 7 )  and (12).  We can now 
parametrise a and b with 

a = t l / *  COS( e) ( 2 3 )  

b = -t’/’sin( e)  (24) 

so that ( 2 2 )  is satisfied as an identity and ( 2 1 )  becomes 

As the system changes state from SN to - S N ,  8 moves from 0 to T. The barrier 
between these time-reversed states is at SN-1= (-tN)1’2 when 8 =;T. The barrier at 
SN-1 has a height given by 

F ’ ( r / 2 ) - F t ( o )  = ( N ~ / ~ ) ( J N  - J N - 1 ) .  (26) 

An analysis similar to the above using a larger number of states, I, ( 1  G N - l),  gives 
I barriers with heights proportional to ( N t / 2 ) ( J N  - J n ) ,  n = N - 1 ,  N - 2 , .  . . , N - 1. 
These extra barriers can, however, be neglected when calculating the dominant term 
in the relaxation time, r, which is defined by 

( S N ( t ) S N ( 0 ) ) / ( S 2 , ) - e x p ( - - t / r ) .  (27) 

The Arrhenius law for the relaxation time r at temperature T is 

1 /  r = exp( - Bn/  T )  
n 

with Bn = N-t(JN - Jn) /2 .  The smallest barrier in this sum dominates and so the 
relaxation time is 

r - exp( NAJI2T)  (29) 

with AJ = J N  - J N - ,  . In order to calculate the divergence of the relaxation times 
between time-reversed states all that is required is the distribution of AJ, the difference 
between the two largest eigenvalues of J. Notice that on ergodic time scales the 
time-dependent correlation function (S, ( t ) S N ( 0 ) )  is not self-averaging and will vary 
strongly from sample to sample. Bray (unpublished) has directly confirmed the domin- 
ance of the smallest barrier by integrating out from the dynamical equations all but 
the lowest mode. The state SN moves now in an effective double-well potential where 
the barrier separating the minima is the above smallest value. 
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In order to complete the calculation it is necessary to find the distribution of AJ 
which determines the divergence of the smallest barrier height. This task is made easier 
by our choice of J as a Gaussian orthogonal matrix. From random matrix physics 
[lo] it is known that the probability density of x = K / W ,  the difference, K ,  between any 
two adjacent eigenvalues of a Gaussian orthogonal matrix divided by its average value, 
w, is approximately 

X T  
- 2 exp(-bx2) .  

This distribution is one of the rules which form part of the Wigner surmise. It is a 
good approximation for large matrices and arises out of two simple assumptions. The 
first of these is that, given an eigenvalue at E, there will be another one close to E + S 
with probability proportional to S for very small S. Secondly that, if the length S is 
divided into m equal parts, then the m probabilities of finding an eigenvalue in one 
of these parts are mutually independent. Both these assumptions turn out to be 
inaccurate but the distribution remains a very good approximation. 

The mean of the eigenvalue difference, w, is a function of N and the standard 
deviation, a, can be related to w by (30) to give 

w = 0.5227 w. a = 

Numerical results obtained by Mehta (see [ 113) from the centre of the spectrum give 
a/ w = 0.532 f 0.009. (32) 

Although this problem is well known in random matrix physics, doubts still remain, 
as far as the authors are aware, about the applicability of results from the centre of 
the spectrum to the tail [12]. As the tail is the region in which we are interested we 
now present numerical evidence that the approximate distribution from the Wigner 
surmise and numerical results from the centre of the spectrum are good in the tail. 
The mean of the eigenvalue spectrum is also found as a function of N. 

3. Numerical results 

To make J a Gaussian Orthogonal matrix its elements were chosen from a Gaussian 
distribution with zero mean and a variance of 2 / N  for the diagonal elements and 
1/ N2 for the off-diagonal. 

Calculating the mean of the first eigenvalue spacing AJ for an ensemble of matrices 
J of different system sizes we found that 

ln(w)/ln( N )  = -0.68 f 0.02 (33) 
(see figure 3). Hence the mean of the eigenvalue spacing scales with system size as 

This result is not very surprising-it is confirmed by the following heuristic argu- 
~ - 2 / 3  

ment: the average value of the ith largest eigenvalue of J, Ai, is given by 

where the eigenvalue density p ( h )  is taken to be the semicircular distribution (7).  If 
we consider only eigenvalues close to the edge of the semicircle then, from (7) ,  
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P ( A ) - ( ~ J - A ) ” ~ .  Substituting this form for p ( A )  into (34 )  gives 2J-hi=O(N-2’3) 
providing that i is of order 1. Hence the difference between the two largest eigenvalues 
of J scales as N-2/3.  

The second result we obtained from the numerical study was for the ratio of the 
standard deviation to the mean of the eigenvalue spacing. From figure 4 it can be seen 
that 

u / w  =0.535*0.01. ( 3 5 )  

This result can be compared with the Wigner surmise and confirms that ( 3 2 )  is a good 
approximation in the tail of the eigenvalue spectrum. Comparison with the numerical 
results of Mehta (see [ 111) reveal complete agreement within numerical error. This is 
quite surprising considering the studies were done on different regions of the spectrum. 
In the tail, where our study was performed, the density of states is quite different from 

0.6 

w ; OS5 

0.5 

I + + t  
+Mehta I +Wigner 

I00 200 300 
N 

Figure 4. The ratio of standard deviation to mean of the difference of the largest two 
eigenvalues of a Gaussian orthogonal matrix against system size. The predicted values of 
Wigner [ 7 ]  and the numerical results of Mehta (see [ l l])  from the centre of the spectrum 
are marked. 
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the Wigner semicircle distribution, due to the finite size of N (see (16)), whereas in 
the centre of the spectrum it is a good approximation. 

Applying these results we find that the divergence of the smallest barrier height at 
zero temperature is O(N' l3 ) .  At finite temperature T <  T, the mean smallest barrier 
height that dominates the spectrum of relaxation times is given by 

B = tN'l3/2.  (36) 

r - exp( tN'13/2 T ) .  

This gives relaxation times between time-reversed states that diverge as N + 00 as 

(37) 

4. The SK model 

TAP derived a set of equations for the magnetisation mi at each site for the Ising SK 

model. They assumed that the magnetisation associated with the largest eigenvalue of 
the exchange matrix J was macroscopic in the spin-glass phase, as is the case in the 
spherical model, following an earlier suggestion of Anderson [ 131 that spin-glass 
ordering occurred when the magnetisation associated with the largest eigenvalue 
became macroscopic. Later Dasgupta and Sompolinsky [ 141 argued that the distribu- 
tion of magnetisations is sharply peaked at the largest eigenvalue of J but that 
macroscopic condensation does not occur. This result was obtained by expanding out 
the TAP equations in terms of the eigenvectors of the exchange matrix J. The square 
of the magnetisation associated with the largest eigenvalue of J was found to scale as 
N516. A Monte Carlo simulation and numerical solution of the TAP equation supported 
this result. 

In this section we study the barrier heights in the SK model by doing a perturbation 
analysis of the TAP equations in the low-temperature phase. We show that the barriers 
in the SK model are of order tN'13 in the scaling regime where T + T,, N + CO and 
tN'13 is fixed. In this regime macroscopic condensation of the magnetisation associated 
with the smallest eigenvalue of the Hessian (matrix of second derivatives of the free 
energy) occurs. The perturbation analysis is performed on the Hessian instead of the 
usual exchange matrix. In normal second-order transitions expansions in the Hessian 
or the exchange matrix eigenvectors are identical due to the linear relationship between 
the two matrices. However, in the low-temperature phase of the SK model they are 
related in a highly nontrivial way (see (40)) and the 'correct' choice of basis is not 
clear. Here we use the eigenvectors of the Hessian as this seems like a more natural 
choice. 

The starting point we take is the TAP equations themselves given by 

These equations are derived by using the Bethe method for a given set of exchange 
constants Jii .  mi =(Si) is the thermal average of the Ising spin at the ith site and h is 
an external field which we will take to be zero from now onwards. 

The elements of the exchange matrix J have the same distribution as that taken 
for the spherical model, i.e. they are independent Gaussian random variables (up to 
the symmetry .Ti, = 4 i )  with variance J 2 /  N. The density of states in the thermodynamic 
limit is given by (7). 
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The free energy F from which the TAP equation is derived by a variational principle 
is 

with (i, j )  again representing distinct pairs of i and j .  Corrections to this equation are 
of order In N [15] and can be neglected for what follows. The equation SF/Sm, = 0 
gives (38) and the nature of the stationary point is determined by the Hessian, A,, 
given by 

A stable solution of the TAP equations must be a local minimum of the free energy 
and so all the eigenvalues of A, must be positive. 

In order to proceed further is is necessary to average over the randomness contained 
within the eigenvalues and eigenvectors of the exchange matrix J. It seems natural at 
this point to say something about how these averages will be done. Firstly, averaging 
over eigenvector amplitudes is performed by summing over all sites and eigenvalues 
and using the orthonormality and completeness conditions. The amplitudes are then 
assumed to be Gaussian random variables in order that the averages can be evaluated. 
Finally the average over the eigenvalues is taken using the eigenvalue density. This 
process is valid providing that averages over combinations of eigenvectors are zero 
unless implied otherwise by their orthogonality and completeness conditions. It is also 
necessary to assume that the correlation between an eigenvalue and the corresponding 
eigenvector is zero. 

Applying this method gives us the following equation for performing a bond average 
over the TAP equations: 

A bar denotes a bond average which we assume to be equal to a spatial average in 
the thermodynamic limit. If this assumption is made then f= N-' E.,J;. 

Introducing the Edwards-Anderson [ 161 order parameter q :  

1 
q = - C m f  

N ;  

and using the equations above, the TAP equations can be rewritten as 

p I Jijmj = P2J2( 1 - q)mi + tanh-' mi. (43) 

The Hessian becomes 

A, = -pJ, +P2J2(1 - q)6,, + S,( l -  mf)- '-  (2p2/N)J2m,m, (44) 

and substituting for J, from the TAP equations gives 
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We now perform a perturbation analysis on the matrix A,. For clarity the details 
of this calculation have been consigned to the appendices. In appendix 1 the perturba- 
tion analysis is carried out and in appendix 2 the equations are re-examined to show 
that the Edwards-Anderson order parameter equals the reduced temperature 1 - T /  T,. 
In appendix 3 a summation which appears in the previous two appendices is evaluated 
using the averaging rules described above. For t + 0 and N + 00 the final result of the 
calculations in appendices 1 and 3 is 

with N”’a representing the magnetisation associated with the mode of the Hessian 
with the smallest eigenvalue and A:), the zeroth-order contribution to the eigenvalues 
of A,, being given by 

A;)= I + ~ ~ J ~ - ~ J , .  (47) 

The first summation in (46) diverges in the thermodynamic limit and we can calculate 
the leading term given by this divergence. Clearly the eigenvalue density of AF) is 
simply related to that of the exchange matrix J by A(+O’-Ako’= p ( J N  - J,) .  Thus the 
sum will be dominated by the p = N - 1 term controlled by the gap between the two 
largest eigenvalues of the exchange matrix. From the work of the previous section we 
know that JN - J N - l  - N-’13, so the second term in (46) scales as q 2 N 1 / 3 .  The third 
term in (46) can be evaluated as t + 0 with 

r 2J 

Making the substitution q = t (from the result of appendix 2) the equation of state 
(46) can now be rewritten as 

a’= t ( l - t 2 N 1 / 3 - 4 t / 3 ) .  (49) 

Numerical prefactors have been dropped from the second term. Clearly the perturba- 
tion analysis is valid when t6N<< 1 .  But we have already taken the limits t + O  and 
N + m  so the analysis is valid for a fixed arbitrary value of tN’13. This conclusion is 
only possible because of the absence of a term in (49).  In this regime macroscopic 
condensation has occurred into the state associated with the smallest eigenvalue of 
the Hessian. This macroscopic condensation allows us to utilise our previous arguments 
from the spherical model to calculate the divergence of the smallest barrier height in 
the system and hence the divergence of the relaxation times between time reversed 
states. Using the previous method we obtain 

B - tN‘l3.  (50) 

This gives relaxation times between time-reversed states in the SK model which diverge 
as 

r - exp( t N 1 l 3 ) .  ( 5 1 )  

The scaling form for the barrier between time-reversed states (50) is in agreement with 
the numerical work of Bhatt et a1 [ 6 ]  on the S K  model in the low-temperature phase. 
Their results were taken at temperature T = TJ2.  
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The fact that we have seen macroscopic condensation in the regime where t2N‘13 << 1 
is not very surprising. The TAP equations have a large number of solutions N ,  [17] 
given by 

N, - exp(8Nt6/81). ( 5 2 )  

as t + 0. So for Nt6<< 1 there are O( 1) solutions and one would expect that macroscopic 
condensation would occur in this regime. 

It is clear from the work of Sompolinsky that macroscopic condensation into the 
mode associated with the largest eigenvalue of the exchange matrix does not occur 
throughout the whole of the low-temperature phase. We have, however, shown that 
if the eigenstates of the Hessian are considered then condensation into a single mode 
will occur in the limit t + 0 ,  N + m  with tN1I3 fixed. The N113 dependence for the 
barrier heights derived in this limit may extend, however, to general temperatures in 
view of the good agreement with the numerical work of Bhatt et al [6]. 
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Appendix 1 

In this appendix a perturbation analysis is performed on the TAP equations in terms 
of the eigenvectors of the Hessian matrix A,. As we are working at a temperature 
close to T, then mi will be small and A, can be expanded for small mi as 

A.. V =A!?)+ 1J A!?) (Al . l )  

with 

A?’ = -pJ,  + ( p  ’ J 2  + 1) Sij (A1.2) 

and 

AV) = ( m: - q p 2 J 2 )  6, - 2p2 J2mimj/ N + m f  + O( m:). (A1.3) 

The eigenvectors of A, are denoted by ( i  1 A )  A = 0,1, .  . . , N - 1. They are orthogonal 
but not normalised. ( i / A )  can be written in terms of ( i l A ) o ,  the orthogonal and 
normalised eigenvectors of A;), using first-order time-independent perturbation theory. 
This tells us that 

( i l A ) = ( i l A \ > o +  1 ( ~ l l j ) ~ A j ~ ) ( k I A ) o ( i I ~ ) o / ( A ( h O ’ - A ~ ) )  (A1.4) 

where Aio) represents the eigenvalues of A:’. Now expand mi in terms of the eigenvec- 
tors of A V :  

j ,  k 
I * + A  

(A1.5) 
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in order to perturb around the macroscopically occupied ground state. A = 0 corre- 
sponds to the eigenstate of the Hessian A, with the smallest eigenvalue. This means 
that the quantity a, = N”2a represents the magnetisation associated with the smallest 
eigenvalue of the Hessian. By squaring and summing over i we obtain the following 
expression for the Edwards-Anderson order parameter q :  

(Al.6) 

where CY,, represents the square of the normalisation factor for the eigenvectors ( i  I A) ,  
i.e. 

= c ( i l A ) 2 .  
I 

Expanding (45) for small mi the right-hand side becomes 

(A1.7) 

(A1.8) 3mi 2 3  +$mf+O(m:) 

C [2P2J2q+A,)a,( iId=3 c ~ , l ~ , ~ ~ , 3 ( i l p ~ ) ( i l ~ 2 ) ( i l p 3 )  (‘41.9) 

and substituting the expansion for mi (A1.5) into this gives 

I*. WlPZP3 

to order mf .  Multiplying by ( i  I p )  and summing over i yields 

(2PzJ2q+Aw)aI*.aG =5 C awlaw2ap3 C (iI pi)(iI ~ 2 ) ( i I  p3)(il P )  
FIPZP3 I 

= + U ~ N ” ~ N C  (i10)3(ilp)+2a2N C aPl 

x C ( i  I W 2 ( i  I P)(  i I PI) + O(a4, aa,,rJ). 

i *If0 

(A1 .lo) 

Terms of O(a,,,) are shown to be of O(a3)  later in this perturbation expansion and 
will be neglected. For clarity we include such terms explicitly until then. To find 
an expression for CY,, insert (A1.5) into (A1.4) for small uA ; then 

i 

( A l . l l )  

where terms of order a4 and aa,,, have been dropped. Eigenvectors of A, can be 
replaced by those of Af)  to this order. Now square and sum over i. The O(a4, aaPfo)  
terms that have been dropped make no contribution as they are orthogonal to ( i  I A)o .  
So to O ( a s ,  a 2 a i f o ,  U ~ U , + ~ )  is given by 

From (A1.lO) we now know that =O(a3)  so (A1.lO) can be iterated to yield U@ as 

where the sum S is defined by 

s = c ( i  I 0)3i  I P)o. 
i 

Notice that S is independent of p for p # 0. Using = 1 + O( u4) gives 

N-’ C CYACZ:=$CA~N~ C (Af))-2S2. 
A # O  P f O  

( A l .  13) 

( A l .  14) 

(A1.15) 
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a. can also be expressed in terms of S :  

(Al .  16) 

Using (A1.6) we are now in a position to write down a’ in terms of q :  

The sum S is evaluated in appendix 3 as (6N-3)1/2.  Iterating a’ for small q gives 

Appendix 2 

(A1.18) 

Here we use the equations of the previous appendix to show that the Edwards-Anderson 
order parameter q equals the reduced temperature t 3 1 - T /  T, as t + 0. This result 
can be obtained from the TAP equations by expanding in the eigenvectors of the 
exchange matrix J [3]. As a result this calculation provides a test of the consistency 
of our perturbative approach as well as allowing us to use q = t without the fear that 
it may not be contained in our equations. 

Our starting point is equation (A1.10) which we expand in a to give 

(2p’J’q +Ao)aaoN”’ 

=$a3N’/’N c( i10)4+2a2N a, c(i10)3(iJp) 
i w Z 0  i 

+$aSN2N’/’ (i10)6+ O(a7) .  (A2.1) 

The term in (il0)‘ can be expanded in a ( A l . l l )  and the summation evaluted using 
the result of appendix 3. This yields 

I 

(A2.2) 

The second term in (A2.1) can be evaluated using (A1.13) and the result of appendix 
3, giving 

So dividing (A2.1) by UN’/* yields 

(2P2JZq + A O h  

8a4 1 
N p+oAio)-AF) N .+oA, 

=2a2+-  16 a4 1 +- -+12a4+0(a6).  

(A2.3) 

Now we must expand the left-hand side of this equation in terms of a and hence in 
terms of q. Aio), the smallest eigenvalue of A:), is given by 

(A2.5) Aio) = (1 - PJ)’. 
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The eigenvalues of AV) are defined as 
2p2J2 

( i  I 0 ) h f  - P2J2q  -- A6“ = ( i  I O),mimj(j IO) 
i N i  

(A2.6) 

(A2.7) 

Evaluating the summations using appendix 3 yields to order a6 

All that remains is to evaluate Ah2), the contribution to A, from second-order perturba- 
tion theory, 

(A2.9) 

So inserting (A2.5), (A.27) and (A2.9) into (A2.4) and substituting a’= q, which is 
correct to this order, gives 

(A2.10) 

The summation in this equation equals 1 so, as T + T, = J, the equation has a double 
zero at q = l - T / T , .  

Appendix 3 

Here we evaluate the sum S given by (A1.14). The amplitudes of the eigenvectors of 
J, and hence AT), are averaged over, as described in the text, under the assumption 
that they are Gaussian random variables with zero mean and variance N-I. Rewriting 
the sum S as 

I P ) O  (A3.1) S2 = C ( i  I o)i(i I F)o(j I 
ij 

and then summing over all p # 0 (S is independent of p )  gives 
NS2 = C ( i  Io);( i I P)o(j I O)& I P)o 

ij 

= C ( i  tO);(i I ~ L d j  I O)& I P ) O  - C ( i  I o)$j  10): 
ij, Ir id 

(A3.2) 

S2 is thus given by 6 /N3  
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